Consultants on Alternative Energy

The alternative energy consultants tell us that the transition from the petroleum-driven economy and society will not be a smooth one, on the whole. The amount of new technologies and infrastructures that need to be developed and built is staggering—even as Germany achieves powering 10% of the entire nation through the use of wind turbines and solar arrays, even as corporation after corporation is springing up, helped by various governments’ tax breaks and rebate incentives, to drive forward the alternative energy mission. We have lain dormant on alternative energy on the grand scale for so long that we now have to scramble to play catch-up as access to cheap oil lurks ever closer to being a thing of the past.

Consultants on alternative energy also tell us that we need multilateral, international efforts in concert with one another in the direction of getting away from the heavy—almost total—dependence on fossil fuels. They are poised to become too expensive, burning them is polluting the atmosphere, and digging for them is disrupting the natural environment. We have about 30 years left of reasonably cheap oil and gas—and consultants say that within 20 years beyond that point, we had better be at least 90% independent of them. Unfortunately, at the present time the world is mostly not acting as if this is the case. The thirst for oil is growing, not slaking, and it is growing faster now than it did even in the 1970s.

One of the major problems of transition, the consultants point out, is that higher oil and gas prices stimulate the economy (This flies in the face of what many energy so-called “experts” and many members of the public believe, but the fact is that oil and gas are found and manufactured and transported by huge corporations who employ multitudes of staff workers and contractors; and from their huge profits their stocks remain lucrative on Wall Street.). Alternative, or “green” energy has to become more marketplace friendly, more profitable to investors and would-be employers. Wall Street does not like change; so there is resistance to this much-needed economic transition. It is because of this that many consultants are saying that we need an international, governments-backed initiative put into place; we are told that we cannot expect the new economy to spring forth overnight, all clean and polished and perfected, from the black ashes of the fossil fuel economy phoenix.

It is most imperative that the wealthy, big-production nations such as the US, Japan, Western Europe, and others be the ones to spearhead the effort to get off of the fossil fuel dependence. Smaller, poorer nations are very simply never going to achieve the level of energy production through coal and oil that these nations have—for by the time they would be ready to, the cheap access to the fossil fuels will be gone, and they will never be able to sustain their newly-risen civilizations at that time as we have been able to do. The time for transition from black to green is now.

Biofuels as Alternative Sources of Energy

Biofuels are produced by converting organic matter into fuel for powering our society. These biofuels are an alternative energy source to the fossil fuels that we currently depend upon. The biofuels umbrella includes under its aegis ethanol and derivatives of plants such as sugar cane, as well aS vegetable and corn oils. However, not all ethanol products are designed to be used as a kind of gasoline. The International Energy Agency (IEA) tells us that ethanol could comprise up to 10 percent of the world’s usable gasoline by 2025, and up to 30 percent by 2050. Today, the percentage figure is two percent.

However, we have a long way to go to refine and make economic and practical these biofuels that we are researching. A study by Oregon State University proves this. We have yet to develop biofuels that are as energy efficient as gasoline made from petroleum. Energy efficiency is the measure of how much usable energy for our needed purposes is derived from a certain amount of input energy. (Nothing that mankind has ever used has derived more energy from output than from what the needed input was. What has always been important is the conversion—the end-product energy is what is useful for our needs, while the input energy is just the effort it takes to produce the end-product.) The OSU study found corn-derived ethanol to be only 20% energy efficient (gasoline made from petroleum is 75% energy efficient). Biodiesel fuel was recorded at 69% energy efficiency. However, the study did turn up one positive: cellulose-derived ethanol was charted at 85% efficiency, which is even higher than that of the fantastically efficient nuclear energy.

Recently, oil futures have been down on the New York Stock Exchange, as analysts from several different countries are predicting a surge in biofuel availability which would offset the value of oil, dropping crude oil prices on the international market to $40 per barrel or thereabouts. The Chicago Stock Exchange has a grain futures market which is starting to “steal” investment activity away from the oil futures in NY, as investors are definitely expecting better profitability to start coming from biofuels. Indeed, it is predicted by a consensus of analysts that biofuels shall be supplying seven percent of the entire world’s transportation fuels by the year 2030. One certain energy markets analyst has said, growth in demand for diesel and gasoline may slow down dramatically, if the government subsidizes firms distributing biofuels and further pushes to promote the use of eco-friendly fuel.

There are several nations which are seriously involved in the development of biofuels.

There is Brazil, which happens to be the world’s biggest producer of ethanols derived from sugars. It produces approximately three and a half billion gallons of ethanol per year.

The United States, while being the world’s greatest oil-guzzler, is already the second largest producer of biofuels behind Brazil.

The European Union’s biodiesel production capacity is now in excess of four million (British) tonnes. 80 percent of the EU’s biodiesel fuels are derived from rapeseed oil; soybean oil and a marginal quantity of palm oil comprise the other 20 percent.

An Energy Alternative: Free Energy

There has been much debate about what is often called “free” energy—energy that can supposedly, with the right technology, be drawn straight out of the atmosphere, and in very abundant supply. The debates are about whether the stuff actually exists or not, what it would actually cost were it to be harnessed, and if it does exist is it truly as abundant and efficient as it’s being made out to be by proponents of research and development into this potential alternative energy source.

When one hears the phrase “free energy device”, one might be hearing about one of several different concepts. This might mean a device for collecting and transmitting energy from some source that orthodox science does not recognize; a device which collects energy at absolutely no cost; or an example of the legendary perpetual motion machine. Needless to say, a perpetual motion machine—a machine which drives itself, forever, once turned on, therefore needing no energy input ever again and never running out of energy—is impossible. However, it is not so simple to say that a new technology for harnessing the energy “floating” in the atmosphere is impossible. New technologies replace old ones all the time with abilities that had just been “impossible”. Harnessing the power of the atom for providing huge amounts of energy was “impossible” until the 1940s. Flying human beings were an “impossible” thing until the turn of the 20th century and the Wright Brothers’ flight.

The biggest claim of the proponents of “free” energy is that enormous amounts of energy can be drawn from the Zero Point Field. This is a quantum mechanical state of matter for a defined system which is attained when the system is at the lowest possible energy state that it can be in. This is called the “ground state” of the system. Zero Point Energy (ZPE) is sometimes referred to as “residual” energy and it was first proposed to be usable as an alternative form of energy way back in 1913 by Otto Stern and Albert Einstein. It is also referred to as “vacuum energy” in studies of quantum mechanics, and it is supposed to represent the energy of totally empty space. This energy field within the vacuum has been likened to the froth at the base of a waterfall by one of the principal researchers into and proponents of Hal Puthof. Puthof also explains, the term ‘zero-point’ simply means that if the universe were cooled down to absolute zero where all thermal agitation effects would be frozen out, this energy would still remain. What is not as well known, however, even among practicing physicists, are all the implications that derive from this known aspect o quantum physics. However, there are a group of physicists—myself and colleagues at several research labs and universities—who are examining the details, we ask such questions as whether it might be possible to ‘mine’ this reservoir of energy for use as an alternative energy source, or whether this background energy field might be responsible for inertia and gravity. These questions are of interest because it is known that this energy can be manipulated, and therefore there is the possibility that the control of this energy, and possibly inertia and gravity, might yield to engineering solutions. Some progress has been made in a subcategory of this field (cavity quantum electrodynamics) with regard to controlling the emission rates of excited atoms and molecules, of interest in laser research and elsewhere.

An Alternative Energy Education Method

The best method of educating young people about alternative energy production that this writer has ever witnessed is the use of the PicoTurbine Company’s kits, books, and projects. The PicoTurbine Company produces these things for the purpose of advancing the cause of renewable (alternative) energy and getting young people to look into the future and see that the environment that’s being seeded now is the one they will inherit then. As the late, great Gerry Ford said, “Things are more like they are now than they have ever been before.” If we are to change the future world for the better, then it starts right here and now with the advent of “green” energy systems.

One of the core concepts of PicoTurbine can be stated: Tell me, and I will forget. Show me, and I might remember some of it. Involve me, and I will master it. Based on this old tried and true adage, the kits that the company produces come with activity suggestions to get the young people into hands-on learning situations. One suggestion of the company is to demonstrate how heat can be produced by wind energy (the company’s specialty) through using a “picture wire” for the heating element. PicoTurbine has found that people typically think of wind energy as being “cold” energy, and are pleasantly surprised to see how wind can be used for generating heat in the home. Another project suggestion that the company offers is to have different groups split off in the classroom and then compare their respective wind turbines that they have built. They can see which ones produce the most or least electricity; which ones start up with need of the least amount of wind power; and for very young children, which ones have the most aesthetic appeal.

There is a core curriculum that PicoTurbine has in mind for teachers to instill in their pupils. Renewable, alternative sources of energy include solar, hydroelectric, geothermal, and biomass in addition to wind-produced energy. When we use more alternative sources of energy, we decrease our nation’s dependence on foreign oil supplies, which often come from nations who cannot really be called our “allies”. Alternative energy is already becoming cost effective when set against the fossil fuels that we are so reliant on currently.

PicoTurbine points out that wind farms and solar arrays are already letting their makers enjoy commercial success. In the last two decades, the cost of photovoltaic cells expressed in terms of per-watt has gone from nearly $1000 to just $4! It has been predicted by analysts that by the year 2015, the cost per watt should only be about $1 (in today’s dollars). Students also need to be taught about the hidden cost of fossil fuels: pollution and environmental degradation. Air pollution from burning fossil fuels has been shown through studies to increase incidences of asthma attacks, heighten the effects of allergies, and even cause cancer. Switching over to clean, green energy found in the alternative forms would prevent air pollution and help bolster the environment.

Alternative Energy in Ireland

The Irish are currently pursuing energy independence and the further development of their robust economy through the implementation of research and development into alternative energy sources. At the time of this writing, nearly 90% of Ireland’s energy needs are met through importation—the highest level of foreign product dependence in the nation’s entire history. This is a very precarious situation to be in, and the need for developing alternative energy sources in Ireland is sharply perceived. Ireland also seeks to conserve and rejuvenate its naturally beautiful environment and to clean up its atmosphere through the implementation of alternative energy supplies. The European Union has mandated a reduction in sulphuric and nitric oxide emissions for all member nations. Green energy is needed to meet these objectives. Hydroelectric power has been utilized in Ireland in some areas since the 1930s and has been very effective; however, more of it needs to be installed. Ireland also needs to harness the wave power of the Atlantic Ocean, which on its west coast is a potential energy supply that the nation has in great store.

Ireland actually has the potential to become an energy exporter, rather than a nation so heavily dependent on energy importation. This energy potential resides in Ireland’s substantial wind, ocean wave, and biomass-producing alternative energy potentials. Ireland could become a supplier of ocean wave-produced electricity and biomass-fueled energy to continental Europe and, as they say, “make a killing”. At the present time, Ireland is most closely focused on reaching the point where it can produce 15% of the nation’s electricity through wind farms, which the government has set as a national objective to be reached by 2010. But universities, research institutes, and government personnel in Ireland have been saying that the development of ocean wave energy technology would be a true driving force for the nation’s economy and one which would greatly help to make Ireland energy independent. A test site for developing wave ocean energy has been established in Ireland, less than two miles off the coast of An Spideal in County Galway Bay. This experimental ocean wave harnessing site is known as “Wavebob”. The most energetic waves in the world are located off the West coast of Ireland, says Ireland’s Marine Institute CEO Dr. Peter Heffernan. The technology to harness the power of the ocean is only just emerging and Ireland has the chance to become a market leader in this sector. David Taylor, CEO of the Sustainable Energy Initiative,or SEI, tells us that SEI is committed to innovation in the renewable energy sector. Wave energy is a promising new renewable energy resource which could one day make a significant contribution to Ireland’s electricity generation mix thereby further reducing our reliance on fossil fuels.

Padraig Walshe, the president of the Irish Farmers Association, tells us that with the closure of the sugar beet industry, an increasing amount of Irish land resources will become available for alternative uses, including bioenergy production. Today, renewable energy sources meet only 2% of Ireland’s total energy consumption. From a farming perspective, growing energy crops will only have a viable future if they provide an economic return on investment and labour, and if the prospect of this return is secure into the future. Currently the return from energy crops is marginal and is hampering the development of the industry. Biomass energies need to be further researched by Ireland.